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ABSTRACT

The end point method 1s mathematically developed and its application
to the Milne kernel studied in dotail, The general solution of the Wiener-
Hopf integral equation is first obtained. The Hilne kernel appeers im
epplying this method to the integral equation describling the diffuslon and
maltipliocation of neutrone in multiplying and scattering media. The neutrons
are treated as monoshromatio, isotropically soattersd and of the same total
mean free path in all materials lavolved. Only problems with spherical
symuetry are treated, these being reducible to squivalent infinite slab
problems. Solutions are obtained for tamped an¢ untamped spheres; in ths
former case both growing and decaying exponentlial asymptotic solutlone in
the tamper are treated in detail: Appendix I treats the effects of the
mpproximations inherent in the exnd point‘method (ef. 1A=53). Appsendix II

gives the solution of the inhomogeneous Wlener-Hopf equation.
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THE MATEEMATICAL DEVELOPMENT OF THE END.POINT MESTHOD

Introduction

The geunersl development of the end-point method and some of its
applications are desoribed inm LA<5%. It 1s the purpose of this report Uo
supplement this general description with an expliclit mathematical development
of the end-point method and a detailed study of its application to the
Milne kernel. This is the kernel entering in the integral equation describing
the diffusion and multiplication of neutrons in multiplying and scattering
meterials where the neutrons are treated as monochromatic, isotropically
scattered, and of the same total mean free path in all materials involved.
The end-point method of treatment of integral equations is restricted to
one-dimensional oceses, This essentially limits the method *o the treatment
of problems in which fhe materials Involved and the neutron distribution
are both spherically symmetric, these problems being reducible to equivalent
infinite-slab problems, In LA-53% it was shown that the end-point results
may be applied loosely to problems of somewhat more complicated geometry
end sive more or less accurate approximations to the truth. These epplica-
tions depend primarily on loose analogies rather than mathematical argument
and will not be treated here:

¥any parts of this report will be in pert repetitions of material
treated in LA=53 and LA«=53%3A, Here the omphasis will be primerily on the

clear methematical development of the methods of application presented tisre.
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Chapter I. The Wiener-Hopf Method

The integral eguation,

. ,
n(x) = ayodx' r(x') E(x = x') N (1.0)

is known as the sguation of Wiener and Hopfc: With certain reasonable
restrictions on the character of K and n this equation cen be solved exactly.
Before examining the method of solwing this equation developed by ‘iener

and Hopf, it 1s useful to examine the simpler equation,

o0
n(x) = j.d:l:‘7 n({x*) E{x - x') (1.1)
- 00 .

Since this equation is homogeneous, if no(x) is & solution then a  ng(x)

also satisfies the equation for asny constant, a. Beoause of the infinite

limite of integration and the "displacement” character of the kermel (K

deperds only cn the difference, X =~ x') no(x - b) must also be a sclution.

If the solution, n,(x), is unique (except for & multiplicative factor) them
kx

ny{x - b) =a n (x) for some 8o Hgnce n,(x) =e . This suggests looking

for exponentisl sclutions of (1.1).

o0 9
n(x) = ekx = de' ekx K(x = x*)
= e _fdy Y x(y) (1.2)

re ~

) &y oY K(y) =1

-0
Any solution of this "characteristic equation” gives a wvalue of k for which
ckx satisfies (1.1). If there is more than one solution to the characteristic

equation then any iinear combination of the ezponentials determined by them

will satisfy (1.1).
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These considerations will be relevant to the study of the equatlon
(1.0) if K decays rapidly for large |yl . If this is the case then for
large x equation (1,0) approximates (1.1) and it may be expected that with
inereasing x the solutions of (1.0) will approesoh asymptotically the exponent’al
solutions of (1.1). If this 1s the case the asymptotic exponential part of

the solution of (1.0) may be separated from the remainder of the solutlon

by Laplace or Fourier transformation, The use of the laplace transform
is further suggested by the fact that the left hand term of (1.2) is the
Laplace transform of the kernel.

Taking the laplace transform of equation (1.1) gives:
» 60

\[dxe"kx n{x) er-kx dx'n(x') K{x - x")
“pg - Jd.0

~O ;;g ol
1 dx'n(x')e” fdye"ky K(y)

~0

. 7
jdx e K" n(x) (dee"ky K(y) - l) =0

“£2

il

This last equation shows that the leplace transform of n{x) must vanish for
all values of k which do not satisfy the oharacteristis equation, (1:2) -
An aeprlication of the seme technique to (1.0) does not lead
jmnediately to a factored equation because of the finils lower limits, To
got around this difficulty Viener and Hopf lntreduced the following trisk.

Define n(x)

£(x) +g(x),
vhers £(x) =z 0 forx< O

g(x) = Oforx & O

U
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This permits writing (1.,0) in the form

0
£f(x) + g(x) = Idx' f(x') K(x - x')
- 00 .
Now taking the laplace tranaform pives
(4] o 00 o0
j'dx f(x)eakx + fdxg(x)e‘k,x = J'chce"kX dx'f(x")K(x - x")
-0 -0 .co -8 oG
= ‘f‘dz‘e‘kx‘f(x’) dya"ky K(y)
-0 -30
O3 x
Defining F(k) = dxf(x)e”
J- o0
N oo
G(K) = axg(x) &K=
U-00
h oo
E(k) = |axK(x)o™™™
; 3
we have
1) =F() (K@ - 1) = F) P (1.3)

This equation will hold for eny value of k for which all threes integrale
exist, We therefore impose conditions on the kernsl and solution of (1.0)
whioh ensure the exlstence of a suitable region in the complex plene in
which all three integrals exist. We require that K(y) decay at 169-.815 8.8

rapidly as an exponential for large {positive or negative) y.

E(y) = o(e-o ly‘), o>0, (1.4)
Then §_(k) will exist for «e<.R(k) ¢, We further assume that
£(x) = o(e™  d <o (1.5)

The kernels of primary interest are symmetric. For these, if the "largest”
value of o satisfying (1.L) 1s chosen then (1.5) is not a restrictive

kx

condition since f(x) must apprcach asymptotically an exponential, e, for

some k satisfying _I_(_(k) = 1 and therefore within the range of convergence of

L Y
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E(k). The form of equation (1.3) clearly requires that g(x) decay
(for large nepative x) at least as fast as e®*. Thus G(k) exists for all
k having I'(k) <o. The three integrals wlll thsrefore all exiat throughout ‘

s vertical strip in the complex k-plane definzd by 4 < Rik) Co

e |~
K (k) exists

P.6,K codxiat

Fig. 1

Within this "common strip® all three integrals are couvergent and equation (1.3)
must be satisfled. Outside this strip the non-convergent integrals will be
defined by analytic extension (and need not be analytio) in such a way that
the equation is a§i11 satisfled.

Within and to the right of the common strip F(k) oxists and is
analytic. (It is clear fr&m its definltion that in this rangs any derivative

of F(k) exists.) Similarly within and %o the left of the strip G(k) exists

.

end is apalytic. X(k), hence also P(k), exists and is analytic within tho
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strip but may have singularitieg on either side of it. ¥e make the further
essumption that F(k) and G(k) have no roots in their respective regions of

analytiolty. (Cf. Paley und Wiener, Fourler Transforms, p. 51i). e further

require that there exist a sub-strip within the common strip within which
P{k) has no roots. (This must be true if P(k) has only a finite number of
zeros in the common strip. This will actually be the case, Cf. Titchmarsh,

Fourier Integrals, p. 339.)

e have now a sub=8trip within which log P(k) is apalytic,; within
whioch and to the right log F(k) is analytio; within which and to ths left
log G(k) is analytie, and within which the three satisfy
log P(k) = log G(k) = log F(k)
This equation wil) be satisfied throughout the plane by the analytic extensions.
It is now easy to find functions,  and G, satisfyling this equetion
and the analyticity oconditions., For values of k within the sub-strip we

express log P(k) by means of a Cauchy intepgral:

(1/2n) dic’ log P{k')

log P(k) T

it

i

/2n) [ o t0g pG)

+

(1/2m) LFKI log P(k')

where the contour of lntegration consists of two vertical lines in the sub-sitrip,

one running up to the right of k, the other down to its left.
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We have now decomposed log P{k) into two parts, one certainly analytic within
the strip and to the left, the other within and to the right. These may be

identified with log G(k) and -log F(k) und give a solution to the equation (1.0},

dk*?

- §];xf fL B w k log P(k) + constant

log F(k)

H

(1.6

1
log G(k) = é-% .[R E"E%_E log P{k') + constant

Thie contour integral representation of log F(k) determines F(k), hence also

U

£(x),

APPROVED FOR PUBLI C RELEASE
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= 11 =
'+ e :
- 1 kx
£(x) = ST . o F(k) dk (1.7

v

where § 18 chosen to make F(k) regular along the contour. In particuler 3
may be taken in the sub-strip. Since F(k) is analytic to the right of the
sub=strip, the contour may be translated to the right as far as desired, For
negative values of x this may be used to show that £({x) vanishes,
: kgx :
If £(x) contains a term Ae (e-go. a8 its asymptotic solution),

then its laplace transform, F(k) will corntain a corresponding term,

Py
jdx o“kx Aekox
)

= A/(k - k)

Thus & pure exponential term in f(x) manifests itself in F(k) as e simple pole,
and the coefficients of the two may be ldentified, The coefficient of the
singularity is most easily determined by expanding log F(k) about the
singularity.

log F(k) == log(k - k) +log & +0(k - k)

The asymptotic solution will be determined by all of the singularities of
F{k) on the imaginary axis and in the right halfeplans, If there are no
singularities on or to the right of the imaginary axis the sclution, f{x),
will approach zero asymptotically. A more useful asymptotic selntion, however,
will be that determined by the first singularities to the left of the imaginary
axis.:

An important speciel case of this general treatment is that for
which the kernel, K(y), is symmetric and for which the characteristic equation
has only & single pair of conjugate roots on the lmaginery axis. If these

two roots are at + 1 k,, then the solution will be of the form

APPROVED FOR PUBLI C RELEASE



APPROVED FOR PUBLI C RELEASE

'120

F(k) =B [sin k, (x +x;) +h(x), h(x)-30 as x~> +o0 (1.08)

Since the equation is homogeneous B is undetermined. x,, however, can be

evaluatod,

F (k) \f:l:: ewkx B [sin' ko(x + xo) + h(x)]

~ 00 )
B jdx o B [Olko(x Fxo) gtk (X + %) Eih(x)]
o 21

B eikoxo o ikgx,
= HWA\TTE, - kv A
o 0

In the neighborhood of + ik , H(k) is finilte, We expand log F(k) near these

two poles,
log F(ik, + €) =1log 2. +1k, x = log ¢ + 0(c)
log F(-1k_ + ¢) = log 5% - 1 kx, - log e + 0(e)

1im [mg F(ik, + ¢) - log F(=1k, + e)] = log (=1) +21 k%,
g—>0

log F(k) = log G(k) - leg P(k)

g% _L g% log P(k') = log P(k)

1im [1og P(lk, + €) - log P (=ik  + s)] = log [P“(iko)j; = log (-1)

e—>0 P'{~1k,)
sinoe K(y) 1s even, hence alse K(k) and P(k); P'(k) edd.
- 1 . 1 1
2 ikoxo = 3T IR dle’ 1qz P(k') [Fﬁ?o S iko] ,
1 j alk?’ (1.9)
X & - log P(k')
o T Jr EyT e log ¥
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The two terms, log (=1), have beer neglected since the form of the solution
(18) is uncharped by the addition of s multiple of 7 to k,x,. The evaluation
of x, completes the determination of the asymptotic form of the solution
(1.8). x, is oxpressed in (1.9) as a singls integral which in many cases must
be evaluated numerically. To get the complete solution requires two 1ntegrétions?
ona to evaluate log F(k) by (1.6), another to get £(xj by (1.7)-
Two-HMediwn Frobloma
A more goneral problem that cen be treated by the‘Wipnor-Hopf

teohnique is

o LY ’
n(x) =l[ dx? E*(x - x*)n(x') + \f dx' B (x - x') n(x').
-0 (o] .

Breaking up n(x) as before and taking the Laplace transform of the resulting
equation gives

F(k) + G(k) =K(kx) F(i) +K*(k) G(k)
where the notation is the same as before. This may be written as

(k) :F(k)(_.l__:,éilfl, = F(k) P(k)
E'(k) -1

This is now of the same form as (1.3). The rest of the treatment proceeds in
the séma way: With this more oomplicated form for P(k) there may be a greater
number of singularities of log P(k), leading to a larger number of indeperdent
sclutions. In particular it is no 1onger necessary to reguire that g(x) decay
exponentialily away from the boundary.

ﬁn.import%nﬁ special case of this two-medium vproblem is that
for which XE(y) and K*(y) differ only by & multipliocative factor. This case
wlll be treated extensively in the second chapter.

The ¥Wiener-Hopf technique may be further extended to permit the

solution of inhorogeneous displacement integral equationa. This method is

LY

outlined in A:pendix II.
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Chapter II. Application to Neutron Problems.
In this chapter we treat the applications of the Wiener-Hopf
method (combined with some approximations) to problems concerning the spatial
distribution and time dependence of neutrons in spheres of multiplying and
scattering materials. It will be shown that such problems, with suitable
physical approximations, can be represented by integral equations closely
analogous to the Wiener-Hopf equation, By making suitable mathematical
approximations (the "end-point method") fairly accurate soluti-ms to these
equations can be gotten from the corresponding Wiener-Hopf solutions,
e make the following physlcal approximetiona:
(A) We consider only one nsutron velocity; hence for each material only one
value for each cross section,
{B) We treat all collision processes as isotropic. (Anisotropy of elastic
scattering can be treated to a limited extent., It can be shown that if this
anisotropy is neglected and the transport average used for the elnstic
scattering cross-section quite accurate results will be obtained. Cf. 1A=53
and BM-225.)
{C) The total mean free path will be taken to be the same for all materials
involved.
(D) The neutron distribution will be treated as a continuum. It will be taken
to be spherically symmetric eand of stable spatial distribution. These three
conditions will certainly be good approximations if the neutron distribution
has lived through many generations end consists of a sufficient number of
neutrene to make statistical fluctuation negligible.

We adopt the following notation:

|
|
| I

gl
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e ——————

op is the fission probability per unit path length. (It is
therefore the product of the fisslon crose secction and the
number of nuclei per unit volume.) Similarly

G, 18 the scattering probability per unit path length.

o is the absorption probablility per walt path lengtho

c=0, +0, +0C
£ 8 a

v 1s the mean number of neutrons emerging from a fission process

F= 1+¢f= Yo "% is therefore the msan number of neutrons

a

emerging from a collision,
v is the meutron veloclty.
n(r,t) is the neutron density at point r at time t.
Wwe express the neutron density at (E!t) as an integral over

all points at which these neutrons may have suffered thelr last collisions.

)

v n(r,t) = Jdﬁf o v F(r') o, t- L 1 =olrwr4

@
v Ln(rer)?

(2.1)

We look for solutions of the form

a(z, t) =n(r) oo’

The integral equation, (2.1), then takes the form:

1 09(0 +1o/V) |r - r%

n(f'_) = Idﬂ' g F(}:‘) n(f_') m}a

We now rescele r, taking as the unit of length the mean attenuation distance,

1/(0' +Y0/V)u
x =1 (0 +7/7)

a(x)= - x j‘di’ F(x') n(x") o~
1 +‘Yo/bv

i
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= 16 had Z o e '711...”, ":Z., .:.',77'"'

@ = o [aw saiaE) S
n{x) = x' F{x')n(x* e 2,2
¥FTTY f 2RI e - an? (2.2)

If we now intreduce polar coordinates, x'= (r', @'
taking the point x on the polar axis we may make use of the assumed spherical

symmoetry of n{x') to reduce {2.2) te an egquation in cns dimension,

Laf2
(reﬂ'a-arx-'cos &

o

nig) = L jr"z dr® F(r") n(uﬁ‘)jfﬁﬁf sin © d8 &
Ua(r24r12 . 2rrt cos @)

1+

2

Taking ¢ = cos ©, Qa =r" + r”e = 2rricos €

sinede = - =1 s
o L2 + r'2 o 2rr? cos @) ° j-l JA

an " «(r? + '@ . 2rr' cos %)1/2 1. -4
of du

1 r+r! faf eﬂ’l _ ,e,dﬂ\t
g\[rar'f et DPH (dpm‘;??/

i

?1‘"%“5 E(‘r - r“.) - E{r + r'}iﬁ

o0 =t
where E(s) = | fm“?gﬁ,

1 @ p
ra(r) = T \[0 dr® P(r*)r*n{r") [E(Ir - r’!) = E(r + r')] (2.3)

If we now define u{r) = r n(r) and treat wir) as am odd function and F(r)
as an oven function of r {no mcaning has previousily been essigned to negative

values of r or te the corresponding n(r) and F(r) ) we may write (2.3) in

the form:

APPROVED FOR PUBLI C RELEASE




APPROVED FOR PUBLI C RELEASE

217 =
u(r) = 2(11:?5. ji(i:' F{r*) u{r?) E(ar - ') (2;124)

If iopstend of esssuming the materisl and neutron distribution spherically
symmetric, wo take both as functions of only one Cartesian coordinate, 2z,

equation {2.2) may be reduced to au equation in one dimencion as follows:

N 2 Fl1/z
1 o p A “+ sty ¥ 4 {%ex? s
n(z) =157 fd F(z") n(zv)”dx'dyu o He=2 4 (ey)® 4 (eox)]
H B ] 2 - [] 2 % 2
L;Fl [(..nz ) + (J ey y) + (me )

o5 ned )
= ,,1‘“2};9. J‘dz‘ F(z')n(s') eff pdp &
AT o o Lag:
vhere 12 = (2 - z’)a + pg, ﬂd]l:; pdp
, — 1 ¢ T fe -t o g
n(_{r_) - Eu(i .’_‘Y)*- j‘dz I(Z ) Il(u ) k‘;(%z « & h) (205)

A compariscn of oguations (2.l and (2.5) shows that the sphere problem (2;&0
may be identified with a slab problem (2:5) in which the distribution of
meterisls (F(zl) across the slad is the same as thuat along a diameter of the
sphere. Any odd solution of the slab problem, n{z), may be identified with
the quantity u(r) in the sphere problem and ceoaversely. The "fundamentel.
mode” of the sphere for which n(r) is everywheore posltive corresponds to the
"pirst harmonie” of the slab in which the neutron density takes oo epparently
meaningless negative values. For thls reason, and because higher modes may
be apperimposed on the fundamontal, we will treat the neutron censity, n{z),
w8 a real quantity walch may have elther sign.

For a temped sphers of core radius a and outer tumper radius D
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mean pttenuation distances, the integral equation (2.4) takes the form

1 + fh =8

B(r) = e dr? 1y 1 g o ?
(r) Ty ® u(r?) §.E ({r - r7|)
+ £ &
+ 21l ar*u(r?*) i;E (hr - r”i)
1 +y =B 2
3+ft b

T i dr¢ ulr®) %.E (Ir = o'|)

where and £, are tho values of £ in core amd tamper respectively. This
eguation differs from the Wiener<Hopf equation in having four boundaries
instead of one {or two for an untamped sphere). With more than one boundary
no exect solution is kmowm. We therefore resort to an approximation, namely
te treat the behavieur of the solution near each boundary as if no other
bovndaries existed. It was shown in the first chapber that the solutian of
the one-boundary problem appreoaches, at large distances from the boundery, &
solution of the problem with infipite 1imits, It 1s reasomable to expect that
the solution of a twowboundary problem in which the boundaries are very fax
apart will behave in some middle region as & solutlion of the infinite-1limits
equation. If this is the caze, we have only to combine twe one-bouncary
solutions in such & way that their asymptoblc components coincide. In =
many-boundary problem, e.g. the tamped sphere, we apply this recipe in each
region. This approximation method, the "endepoint method", would ssem, from
the above argument, reasonably accurate only if the distences between
boundaries ars many mean attenuation distamcer. It is shown inbAppenﬂix I
that the limit of reascoable accuraey is actunlly a few tenths of a mean

attenuation distence, There is therefore goed reason to belleve that
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i

——
S —
S e

- S — e e
e T e
- R

throughout the interesting range of slzes the end-polnt method igtgﬁffggfﬁﬁ%ly

——

accurate,
In order t¢ apply the endepoint methed we must first study the
one=boundary problem with the "Mllne kernel”,
K(y) =e 5« B(ly])
Thia kernel with @ = 1 occurs in "the equation of E. A, Milne" describing
the flow of rediation through the outermost layers of a star, We wlll, however,
refer to it as the "Milne kernel” fer all positive values of @, The general

equation we have to study is them

N QO

n{x) = cﬂ~[jn ax*® n(x*) %.E (= - =) + 0.}0 dx?® n{x?) %.E {|x - x“!)
e = (1 + f‘)/(l + %) e

Several cases ariss, For a fres surface, eilther the outer surface of =
tamper or the surface of an untamped sphere, we taoke ¢! = 0. For an inter-
face we take both ¢ and ¢! positive, For the core material ¢ must be greator
than 1 (f>v); in the tamper ¢ - 1 may be of either sign.

We first treat the free-surface case.

® i
nix) =g dx? n{x? - xY
() = [ et atx) 33 (= - o)

The characteristic equation is

#

(¢/2) vr:iy (o"'ky + eky) LE?_Z_ oY B

/) e (5 =)

s {:y%E (1y) ¥

tanh‘lk =

) 3°E(1‘“WE
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If @ <1 we have two real reots, + k such that o = k/tanh .k' s If e>1 we
have twe imaginary roots, + 1 k_, such that e = ka/tan°1koo in either case

1% oan be shown thet the cheracteristic eguation has only two roots, In the
lattor case the asymptotic solution is & sinuscidal funetion of kox:, in the
former a hyperbolic function. We will represent the phase of the asymptotic
solutiom by the "oxtrapolated end-point”, x,, such that the asymptotic solution
is the sine or hyperbolie sine of k, {x + x,). We now fellow through explicitly

the method of solution outlinmed in Chapter 1.

a() £ 1)+ el =o | axt ) Fu (fx - i)

4

f{x) =0 for x<o

g{x) = o for x 2 o

j\ ax n{x)e kX =f°°dx okx Juxh (x7) % _,(ixw:t’{
fdx" £xr) e j‘d y oY % E(ly})

F (k) .Z,K.log ; jI‘:

F(k) + G(K)

i

il

)

T

6(x) ?»F(‘k){:é% log (1 * "‘) 1= P )

P(x) has singularities only at + 1. These singularities are branch points so
that te make the function explicit we introduce cubts lying along the real

axis from -0 0 =1 and from +1 te +o0 . Ve treat first the case o » 1,

The twe roots of P{(k) are then pure lmaginery, -+ ikoc The singularities of
iog P(k) are 1 and + ik, Ve look for a log F(i) analytic to the right of
the lmaginary axis (corresponding to the sinusoidal asymptotic solution, £(x),)
and & log G(k) analytic to the left of +1 (corresponding to a g{x) decaying

somewhat faster than e ) and satisfying
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log P{k) = log G(k) - log F(k)

The "sub=strip” i# which all three of these quantities ure analytic is
O<:R(k)<11; We therefore break up log F{k) by means of & Ceuchy integral
along & ccntour running up and down in this strip and encloslng k, and (except
fcr a common constent) identify log G[¥) and -log F{x) with the two parts of

the integral.
| 1 e 5Kt} = Yor Gl N
log Py (k) = Zi JR K log P{k'} = log G(k) + comstant,

o1 dk? . - o
log PL(k) T - e J}) o log P(k'}) = log F(k) + constant,

R FiS
k
iko-
=] +1
_iko*'
L
v
Fig. 3
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We simplify log PR(lc) by defnrming the right contour to enclose the righte

hand cut,

e

B ’

qu—
¥ g
- 1 dk? c I + k®
1og Falk) = oy J | ETE 1°g[§f«(1°% TR - [10e) = o]

@xX

1 dlkt c 1 o+ ko
o)

1 ak’ -
T JawoE ten

£,

1 /2 -1
[tan = 0~9ﬂ]
k¥ + 3 Kkt

]
'§]°gi?5-1°;‘

=1
Here the tan rises from 0 at k* = 1 ta fat k°® = +00 (a5 indicated by

the bracketed expressions). Substituting k' = 1/s,

2

1 ds
10g P (k) = oo - e
R i JQ S{l = ks}

where T = tan~t /2 T =R 5
© tanh™4s = 1/0s ¢

3

[«3.]

L]
o

g n
=0

0 € ’
e 1 ds I ds
tog Flk) = 5 Jo R !0 =% % (2-7)
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Here and throughout this treatment we encounter logarithmically infinite
constants, A slight modification of our procedure (to make P{k)->1 as
jkl — o0) suffices to avoid this embarressment. The present troatment is
somewhat simpler, though formelly less rigorous.

we simplify log PL(k) by a corresponding deformation of the left

conkour,
ik
™ @
/ :
T
&- AX
L - 1 1
..,iko
Fig. by
1 -t fhrd-3 -
- log fi(!—;ﬁ = 3t Ls ’°8[2’«' (od et ﬂw)' ] U(log) - zﬂ}

) ik, o -1
x (zrri)*{ (?.I?ufg (-7.:73.)1»‘{ -294)

Joi o ~elg o
. Rt a ,
. aog['zs;. (tog 530 - il —1} v Lo zani— - 5]

Vel

Ik~ .
1|k§ + T’L} -3

0g -
7 .
gik'%‘“l 1 {log: Lg— “M’}

L [P 7l
) k’ -k "’ ___g_'(
~ a3 1.8

k~iko & 1k

1]
vleg %% « Iog T etk T led Tk
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Letting r = k'
- P(k)" ST Qe S A .
l
+ log (z o -

1
Letting s = I wo have

1 .
.. 1 ds -4 Gf2 4., T =-
h l"g Pl.(k) - ﬂ“g 1+ ks) ngTré-‘téﬁ 1/<s —twh”"] [tan =k v 0]
o .

k s b
+‘g(1o-k)1 ?

3 : 1
- ds 1 ds 1
) 2[ S _é‘s(hks) Tovdog (e,
0

o
1 1 . ry '
N ds 2 -l L, L 3y kK dg
log PL{M-ZL? i L T~ fog (k¥e i)' + ﬁj 7Tis k- (2.8
. -4

Combining these twe expressions, (2.7) and (2.8), with

log P (k) = log (%E log %m}%a 1) = log PR(k) - log B (x) (2.6

gives

. A
e 1+ k _ 21" as
Mg(é’i’ log =g °1)°” ":’i“_[o - T -

2 2 "ke ¢ .
+ 1 -] + & sds
og {k <o ) o 0 ToRZ2 T (2.9)
Taking the 1imit as k—P0 we get
L

1 j\ ds 1 ¢ - 1 :
T Jj0o % (T, - m = log eme 2,10
s ‘o T koz“” (2.10)
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m2§m

and {2.9) becomes

L1

4 2

wt ?J sds . ds & 1 ds

_,‘;_.:‘E 3-Ki5T %! per T, - -g‘ A
° [+

(2.1

Dividing by k¥ and egain letting k 30,

1 1
2k & 6{c - 1)

] ¢
We now subtract the (infinito) constant, 2 g . 3 as T. = log B
: o 8 roJo T8 e .

from log Pp(k) and log PL(k) te give log G(k) and log F(k).

, - 2 2 k ' ds .
log F(k) = = log(k™ + k) + - L 5 To tlog B;

=jne

iog G{k)

1]

L]
ds k : dm
e 1} .
EO i «{’lc N+ = i S T, + log B,

X J’ de B{ec - 1)
K 2

o F=gr T, *log

i

. [}

We now determine x, and the value of B required to give the asymptotie

o

sine vmve in £{x) unit amplitude,

i

e e e

et
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£(x) = si ;

sin k (x + x,) + h(x) h{x)=30 a5 x—=3+ ®

L

11' x - LN
Flk) = ) e 1tko rH(E) = k sin kox, + k, cos k. x, + B(k)
’)11}{ - ik ) 23 ( F ik ; ke + yog )

log F(ik, + &) == log(2i) + ik x, - log ¢ + 0le)

log Flaik + €) = o log(=2i) = ik x, = log £ + O(e)

1im [ilw Fliky + €) < log Fl=ik, + e)] = Jog {«1) + 2ik x/
e~»0

. 1 1
=\ e, v e dSL 2 lu*f d! 7 ; - 2
o [t - g onen 9 8522 [ e i )
i o v
1
ik i
o BN uw ;Y 1—;;:.,5‘) + tog€4)
Je !
i
o1 43
&"[ rrarll
-]

New adding the two valuves of log F gives

log ¥ (i.ko-b' €&+ Bag F(‘H'.o'vé) -2 lcg {2¢) + @(a‘)?

fu.m(z& O ek { as T, (1“,‘ : 1”‘, s) ¥ 2 lag B+ (M),
J

0

re

-
= - ¢ log (Zkae)fl"«%?—j 395

1o, s? e+ 2log B DG

e

k {1
= log - L0 sde
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This intepral way be evaluated by allowing k to approach 1k0 in (2,11):

i
1 I.k -
P % scls T hm -1 ‘ag (\2 " ) oy 'Dg < 1«: -
4+ & 1%{1 {ﬁk,)e

o . 1 e
Vog B k log Ty

! v‘—c-nw-a
ko i(i H»kg.")
2

1
3og Fﬂ‘)‘%f Ie ks 'ﬁg (x* +k1)e~§og 20 1)

o
IJCE io /(3 k) e%f:{ﬁ?.rc
. & . 2 (c-1)

RGNS e K e k 43
i % - T
<k‘,/}“ cf(1ek ) eﬂ'ﬁhki t -k sin ka X, - ko FX.23 ka xg>

>

Hik éITLk 2e-1)

-=H'"{0 5
We cen evaluats H{o), the total mrea of h(x), and H’('{')‘z‘ ts "mean length",

1(\/1.“:/(1 +k02)*coskx)
[« 3 V)

H{o} = ¢
ko 2{c - 1)

s, )
=H? (0) . 1. ( /1 - c/(l + ko ) 1 \[i )
= sin kK % - k L G8?
[« Jaed ] )
. 2(e - 1) o

H(o) H{o) ke

Making use of the formwia
kF (k) ,

® o
n{o) = lim kj dxn{x)e = 1im
k-»00 JO k-3 oo et
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we geot
AR N i
h(O) = "h\ kko 1o C/(iﬁ' k"a) C%IO lpks (T -ﬂ) A QQg (1*’&)
k‘;u kt‘ kez 2{c-1 3

e iliie LT OR Y TRt g RN PR

@) &, (T ?f ds (T.-a) /A*u

’E(r. 1y

We can derive an oxpression for h{x) suitable for numerical evalustion as

Ffollows:

i+

1 kx

hix) = = g dke  H(k), 0<b <l
- i K""ﬁ

H(k) is not singular at + ik . (The bracketed expression vanishes}, thus

the contour may be deformed Lo lie along the left cut, Only the integral

Wit _ds T = 1'\__‘1 T . k" Lo T
T Yeks 7y 1~ ks -k st ‘oo
éo uo [+]

1 £ jop Lk
‘;‘.‘. mé—s»f - fok ?‘—;hgl-k‘E‘
TAEY 1-ks ¢ log Kt k> <1 3
0

i3 double-valued across the cut. Thus only the first term in H{k) contributes

-1 1 - % %
kot ot k ek, )
hiw = 53‘;—‘ dk & - %y ﬂ/ ‘z:; ﬁL sl Lo ﬁi e < -g_g o
' B /HE R e R
-

s bl s T
?;/T(i M), sf;s{““ ) e 5E]
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Replacing k by <k gives

W

N kit gy
WO = - s fest -8 i ¢ 9o TS T -
KA CPRV A T W T 5 1

£ c=% Y frie\» 2
(5 st -1 (&)
1

(h({x) is negative for all x).

If e<1 the roots of the characteristio equation are + ky, where

¢ = kl/tanh"lklo The contours must now be teken as shown in figure 5.

(8 4

Figo 5
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Progceeding in the same way as for ¢>1 we get the analogous results:

n{x} = sinh kz(x txg) ¢ h ()

i

1 - 1 ol 12
1 d (7.-6) 7 108 " (2.12)
o
i 545 2o o AL A (2.49)
F 1-k*s* ¢ 2 kX d ek
. o 1- Feleg 1ox

- -1 ‘f’./z { «1 - RN o}
TQ z Tan {'zmh'i G - 1/’:_3 ) tan T

VK kl /é‘/((}‘kﬁ_’.)w 1 e?};o i"'&"'sE?Tc
F &’ he ki- qu / 2(1“-) )

TS
H (o) = 1[/_%’<“~m_f)1 - eosh Ky 4o
L
e 1
b0 1k 1-1 L
R oo i v wn,
Y ()

n(o) =/é ('{T’E ‘1)
Sk Y ds

i [t
ho* -5 /5 RS (Fratst-9"+ (&)
1 |

Sew
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5

Combining these hyperbolic results (¢« 1) with the elliptic results (c.)ri)
proviously obtained shows the character of the solution and its numerically
identifiable features to be continuous {(as a Tunction of @) across the parabolic
{e = 1) boundary case,

We now treat the two-medium cate, distinguishing the twe
materials (e.g. active materinl and tamper) only by thelr different values
of ¢. Here four cases arise as the two ¢ - vnlues are less than or greatexr
then 1, We treat explicitly only the case: e»1, ¢¥< i, The extension te
other cases will then be obvious, Becmuse of the applicabillty of the
solution to the simple tamped sphere we refer to the one region, c¢>1,
x > o, as "the core", and to the other, o< 1, x< o, as "the tamper”, ‘e
find two pertinent solutinns, one belonglng te a growing and the cother to a
decaying exponential asymptotio solution in the tamper. For the problem of the
infinitely tamped sphere only the decaying solutiosn will figure (decaying as
one moves away from the interface inte the tamper). However, the "asymptotie
solutim” for a finite tamper will be & linear combination of the twe solutions.

The Integral equation ia;
o] 1 V o 1 '
n{x) = ct g dx'n{x') §-E(Sx - x") + e dx”n(x‘)ﬁ-E(‘x - x'}{) (2.1h)
= Q0 o

RKe use the same notation as bvelore:
n(x) = £(x) + glx)
£(x)

g{x) =0, x 20

]
=
»
)
N
<

I

-« KX
Flk) = g“’w axf(x) e

00 "
Gk} = & dxg(x)e -

w0
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[~ Q0
K(k) :.-( dx%. B(}=}) o = é.é.log %‘:%;%
/ 4 =00
@® -kx
F(k) + (k) =S dxn(x) e
= Q0

oo oo
:j‘ dxe'kx § dx? %E ({x - x'}) {o' g{x') -+ cf‘(x')]
00

= D

K: dy e'ky %‘-E (¥ S‘OO dx"eakxv{ch(x“) + cf(x')]
o

- 1 i+
= prlos 3 [cr0(0) + eF ()
¢ 1 +k
log - 1
b7y i
G(x)= 7 (k) Ak = P(k) P(x)
1 - c’ 1 + k

The singuiarities of log P(k) now lie at:

+ 1 (branch points)

k L
+ 1k roots of Ptk =c
2o ¢ W iy, =)

"0

¥ -
Tk (poles of P(k) ; 1 = c® )

tanh” k?_i

F(k)} (and we assume also log F(k) ) must be amalytic for R(k)>o

G{k) (end we assume 2lss log G(k) ) must be analytic for

-»
‘.

k-x
R{k}) € + k) for "decaying solution®, 1.0, g{x) = 0e “)

ot R(K) < - k, for "growing solution", 1,0, g(x) = 0{c™"%)

log P{k) is anmlytic for =1<R(k) <41 except at + ik , +k,
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- 53 - oI T - "",'.7_,,- ,,
For the two cases we choose contours as follows:
R,\
R
i ]
iko
ik
0
1 - T 1 \\- k.
1 <k g #H 21 \Q -
=ik 7
o .
olko
L
\/L
Fig. 6 Fige 7
"Decaying Solution”

"Growing Solution”

We treat firet tﬁe decaying soiution. As before we identify leg F(k) and

log G(k) with the left and right integrals (again excepting a constant) o

1
log Fy(k) = »3p SR

k'dk"k log P(k?') = log G(k) + const.

1 dk

: log P(k') = log (k) + const,
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We deform the contours as follows:

-
x - \-k
.‘Lke
L R
ta r : e
= - - -
-1 ekl +k1 +1
=ik AP
Fig., 8
— u_;;l’_u dk? « < 1 4+ k! | e 14k?
log PR(k) = sRr J.R P [iog (?i’c" log e © = logll - B log A
1 de

2 § (2.15)
s o = - Gkt e 1+ k'
T o SAT-E3) o= 7w Ry 10&(1 = 5 log )

1 -k
waking use of the previous evaluation of the first term,

d
log PR(k)=—},- <o -

(-4

A
2l

LI AP DU W 8 o, Ak
k' k ¢ 2ot fwt| w8 (21« log Tk ’D
K R’
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L]
N
S

8

the 1ast Integral is now equivalent te that ovaluated in (2.15) (and is
identical with the right-contour irtegral cccurring in the one-medium

problem for ¢ <€1).-

¢ £
log B (k) ~lj . us T4 }‘/kl ds 1 S ds
& *r T Wl (1 <Tks) ‘e 5 S{1 - ks8) * W Jo ST = Esy Ter

? ~ ] )
K as 1% ds /%, k
== L, Yy (Tc— Tc’) Sy )o Y (Tc = Tc') + las \3 * l-ks)
0

We choose the constant to make

1 ' o 1/1{’1 .
leg G(k) = log Py(k) + log B = %S S_;. (T -7.,) - S ds

o c c [o] & :
. (2.16)
k ds . Bk
= 750 T (T - Tor) + log =y

Evaluating the leftecontour i:tegral gives

i dk!’

2k

. — 0 1 + K ' 2
ml@& PL(k) = 2‘,1.{ SL TR {10{;(5&? }.Og ci - k‘? = )e 10g(l - c 10% i j ET)]

H
§
it
]
Fi
a2
o
o
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‘-v-—...f-——\

=k
= 1 5 ak? ] g dpr ! 1+t
} TR e O R v 208 g0 < )

L"

AN
=3

1 [ dk ([ isk” YV _ 2 aL° 1+k )
mj ‘06 kf g)g §- k‘ ) - 2‘:‘.“{R, k’f 9’. log ( k" Bﬂg
L"

L1}

Aft _ds T
7| oy T
o .

v "t 3 *
- log Fi(é:)bej %’-— +Eog(k + k,)*%J

[«

d Ve, K : d
s LSS T T S LT
;'ﬁ‘:‘i’;)T“f “(s hks) ﬂ{ s34 ks) le

| 1 i/k,
iog FiK '908 Pi(}') 93 B %j' 5‘%— (TQ"‘.[‘J -j ds

[+

} 3 .
: (ke ®W)B 2 fTds 4o |
:%] o (T g ki(ﬁ:" N ?ff{ + (0, Ie)*zg 4.
~ o

o ity

I a ) : ey ®
"%j {(ﬂ T ) ﬂ"g)jl‘ ‘06"““""&10%:7{

7 N {ky+ kB 1-e" ka?
fog FCk "‘j{j‘ T+ s (T 1. Y log "T;T"’“‘“—) t los (k c.y/ Tleg kl’“,
o _

1 AN 4
k| ds Bk;(lﬂ.f a-}
:?Ll'ks (- 1) + og T IO VI
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We again determine X, and the value of B required to make ths asymptotic sine

solution of unit amplitude.

£(x) = sin k, (x + x,) + h(x), x>0, h(x)—o0 as X—> + o0 (2.17)

F: & ('“ ) e"‘f“")mm

2t k-tkg k vk,
lgiro [!og Flik, 4~ 1oy F(—iko.e)zg; tog (- Bk, v,

}

2&5’3 (LS ‘.‘(‘ & {-lk
= . <1 —nl o SV R
T Treg st (’. )+Iog (%'ZLR@G)+1°S k, -tk
Q
1y k 1 k
-1 ,_ L1 ke 3 -1 8o
XO - ﬂ;f kg b anevar -t (T )* "‘) 1 ‘l xl" o téh kl . (2.1&
o 3

hm{‘og F (ik, re) + loo F( vky ¥g) = 2 Iog e}‘ -3 iogz

€= 9

1
. 3 — h I
:-g-‘—‘l-j .. ‘(Ta‘i)*aia-?’B——S—L +w'i-':;”'~.
o

7 1*’,151 (C- FY 4k, 3

The first term may be evaluated by the use of (2,11) and {2.13).

1 { , ] a v A
ot , Lkaele- b2k -
2; r 1*2??1‘1 (TC-TC'): “L"ﬁ ‘Dg ZLK°§4‘C 12 : - ‘08 k (3 + nj 1 i}
3 e . el
° ° ‘.';o lko : E;(l’ 1#}»0’)& (1 tan’ k)

(2.19)

= Jog Z(c—l) k’t(l &)
(1-«1” ,_)(k frin‘){l e
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R o JU WV W) s 20 ky 0
log B lg =g " F 8 T L (Y ARTN) [N LR B
1, (eD(-t/avkY)

e 0 gk, *h-v)llee/e) ]

0y 3
vine b ds (= 1 {1 c)( c/(lo-k )) ks kg
log Fib) ?} iy (Tt 3 log fe R AN A

Flk)= do Stk /1c)(1 of Qi) %ﬂm, (Te-Te)
k*+

2{e-23{1-2c'fc)

S hsim b w,+ ¥, cos &, 5
(k)= Fi- A3 toter o cot koo
H kz*ko% b

=m;2:~. %? (kfkl)‘/(i'c') (1‘»‘/(1**:)) %L vees (T )

AN ksinkyue -k, cos kg %, g*

H(ﬂ‘f&{ /(1 z (L c/(hk )) 4 cos Ko %el o

¢le-1¥(1-e/e)

ds (T, -To) |- ;}; sin kg Xg .

H{o) ® a-a a0y , 3 1
2(c-00-c4)  lkok o

Hi{) . 1 Q-e) (l-c/(hko’)) Y
" B0 He) e / -1 (1 -ofe) W 'F éﬂ (T-T.)]- k_., sin ke 2o .
&

P %y 7.
alo) = tiwm kF(k).lm m;’i,...;. _g. (k k{/ﬂ c)(l c/{h-k,;, }} eﬁﬁl«ks (T - Ter)

kvea waoe koo kg 2{c-2)(1e o) ’

e%gelus (T-me A “" ""j %“(T'- m- 1( (e - ) - /(c-l) kxT
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2
n :1‘3/(1+k0)
(o) /2(1 ~=3
i oo
h(x) = ,é%'rfxlm dk H(k) ekx

uﬂjL"*"‘""’g‘m‘"?ﬁt

Ltl

RELEASE

[NER

k ds
( +1k3) Got Som (Te=TgH)

-1 Y

Fig. 12
where G = L0 (1 - e/(1 + k&, )(1 - o)
1 2(3 - 1) (1 - cy/c)

1ds

—

1
4 K
?k {o X *sks (e~ %) -
(<] =

o T o TTEE (To-Ted (k¢ ko )e-1)

(- ey 35)

* ivk \
ko(gk'g‘ 1)

-1
|
o

L.

h(!" dk ekx c

ko (ky-k)(1-¢)
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7e (gfizh-m)
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Replecing k by <k pives

L o] ” % > %
h( ) < ""1"-“'.\" é—k ,:(! nvvn:c&:@- 1 - C/(I M }"‘o 2}) (c‘ -l) '9-7 FJ‘D ldfks (.rt ’ K‘)
X 2w € kollg v k) 2(1-¢) @ -c/e) '

1

whera
' K+
” g cogrid) (g '"") .. EL e-e
B < Es....- F.8 S kel b 2
(5102 35 ) (58 (‘zsu 8 11 ‘i) - ()
" _k_ 3 ds (Tt-TC')
oy - 5t (-c/0ekNE-DG7) | xan o FloToNT o
") 2(1-¢) keky (g, kel 1)y (_‘:»Ii)’“ ¢
1 ? k-1 z
Now returning to G(k)
. ]
ag G(k) = E X 48 (Tg = T..) + log SNk
' T e T ke ( 1) gy - k ,
(2:16)
p v
Xk
“1“ 2k 2(]«-(’:') (]-ac'/:,)

A chaok of this expression is afforded by ovaluvating

2
g{e0) =1im  -kG(k) =/1 = o0 kT n{o), (ef. (2.20) ).
k- =m0 2(1 « c?/c) :

G{k) mgo dxe-kx g{x) :Jo dxenkx(é.eklJc + 3(x) ),

klx
where j(x) = ofe * ) 2B K-p =00
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o pid o™

k) = L2+, J(k)) is fintse.
i

10@(‘"%-) + 0{«&)

L 1
-k k , . .
10{5( 1) El g uuéfu (T T ‘) -+ %— 10g ((v-l) (lac/(]_qkn )

o 1l- s e e Zkﬁg(loc’) (lac'/c)

#

log G(kl + &)

At / e (-cfan) B )

% e ° )

S
gy TeTed -

1
dS Lk ds
—ﬁ- l'kls (Tc ’TQ’) T l‘kl 52 (TC-TC.') +
[+]

’Fhe first term will be called 1‘1’22 by exnalogy with the Xy introduced in

{2,18), the seccnd can be evaluated by the use of (2.11) and {(2:13).

ky .{1 ds (- T.) =
Tho Ihy W . k¥ . kg (c/c ‘1)(1 n)
; i " f /(k * *ol)(cd.) ( /(1 kl. ,,_ {2.21)

8o that

- ¢ (1-c/lek)
IO T TR P

e X%

by Jc(l -¢/l3 Hf.,, )) ekl(uul)

PR
i /k ek"/t(C/(l kM-

+j & (2.2

J 3 = Gl ~ m*

2 (- (1-c/c)

3 )
LY bty [ 5 2 (ewe) _ Q%jo s O L
R € -
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'\Lm
ORI dke*® JK),

J-ioo
"im 1

RN A N/ CEY (S L) S RCEIRS -f“'-f.;,‘t? (T, -Te)

T 2re ko(h-k) 2(1 c')(l—c/c) 2

1)

J-too
( : i
Ex ?‘Hauu (- k Xyt - k‘)("“)(ﬁ:aog Y |
Lok i7
|
i

1 _L/c (e /1 ko)) % _
20k (-e)a-c/fed R’ ky-k k* rko y(e-k,? (l-i"-i T

- kel
) n __k_q (1 c)(l'f—/(l" k )) ék(k*kx) ekx G?FIO\OKS(TQ Tc (iog..i- +m
T R/ 2 e 1)(1—c/c) Kty kpt -T(gag-;g__%»m)

Al o)

ZK{Q"S"'—"'“) ’
e X
e ket /70( b AU | bty Fho T W @2y
-3 o S e T
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= L3 -

The second solution differs in having as an asymptotic solution
in the tamper a growing exponential {growing for increasing negptive x),
eaklxo The core solution is mgain sinusoldal, differing only in phase from
the first solution. Thus, the left contour must still 1le to the right of
the rgots of P(k) at + ik o The tamper solutien, g{x}, 18 to grow as
e‘klx. Thus G{k) must have a pole at =k {It may also have a pole at ey
the corresponding asymptotie glx), eklx, will be dominated by the growing
exponential.) To glve G(k) a pole a% <k, the right contour must pass tc the
left of the pole of P(k) at =k o Since the loft-contour must alweys be to

the i1eft of the right contour, the two conbours must be taken a8 in Pig. 7.

{Other contour arrpagemonts are possible, e.g.

Pig. 13

but the solutions so obtained may be represented as linear conbinations of
the two solutions obtained from the contours of Fige 6 and Fige 7.

Deforming the contours of Fig. 7 so as To permit simplification of
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- bl -

the interrals gives this form:

) ik
1 o]
L / R
o
N\

N

oy

Taking as before:

- 1 j ax _ .
log PL(k) 5T JL BT log P(k') = log F(k) + constant

1 dk* ) .
log PR(k) i gR m—g 1log P(k') = log G(k) + constant

The integral, log PR(k), may be broken up into pleces which have been evaluated

previously.

il

1 dic® 14kt c! 1k
log Fy (k) =i o '(R kiok log@k, & i ) ‘.’x’j' ka'mk logyl "2k' Yog T2y

N (o)
= 1 ds i j 3
= I T, = o =21

s o 511-?:..3) c \é,l'\i ki 1’"-#1; ( l)

1
nj

The last term hes been evaluated in getting log R (k) for the decaying

ak® c! § k!
R TS 102;, l = §E"_ 10,_._, >
decayling
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sglutions
' /e
log By (k) = }-X ds __ +S‘1/k1 ds o+ (1/ 1 _ds
R ), s(A=ks) © ) s(1-ks8) Jo & (1-ks)
v
-3 s __
Ay B(i-ks) ‘ot
=k ' s g gy 4l | as o " as 2 1.2
v, Teks e ¢! W o‘E(Tc"Tc’)+h 0«;-‘10g(kek1)a
k {' ds 2 2
1@8 G’(k) = T{\g T:E? (Tcach) - 10g (kjl - Xk ) -+ 10g B! (202)4)
[#] .

Jt may be observed that the G(k) here obtained differs by & factor of
. .
meTﬁ’Tﬂ from the G(k) previously obtained. Sirce the ratic of F(k)
1 :
to G(k) is the same, the twoe F(k)'s must differ by the seme factor. Vie may

therefore write log F(k) immediately

' 2
log F(k) = ‘;k’i’ g 1(-11-;3 (Tc» Tc') + log 23”2{0 (1 ; ‘3“')
0 K S(kE + kB (e - 1)

B' is again to he evaluated to give the asymptotic sine solution unit
amplitude.
£(x) = sin ko(x + xl) + h(x), x>0, h{(x)~» 0 a8 x—pw (2.25)

ikox -k :
1 (o ©1 P

rlk o= o 1 @9 BN

() "E”Y(}\ - ik kv ik°)+H(l’)

1im [log P ik + g) - log Feik + ‘a)} = log{-1) + 2ik,x,
€ -0 '
ok, [T ae
TR Jo IHsgEse

(T,=T 1) + log (-1)
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_1 (" as o .
17T o THLZE (Ty=T,0) - (x,< 0 since T < T, for o< s<1) (2.26)

1im [10;; F (Lk, +e) + log Fl-ik +e) + 2 log €] = -2 log 2,
g-»0 .
B, (1=c")

- s8ds o R )
= u0 &0 TR (.lc-.l.c,) + 2 log - 2 log (C-ko)o
o)

|4 2(01»1)
2 2
ky (¢ = 1) k j sds
log BY =1 A - X9 .
°8 B e T Jo TR (T = To),
N2
;G (°-1> 1 2(cDlky (1 = c'/s )
-é’ Y . . 2 2 2 (cfo 2019)
k (1-c') (1ec/Q+ %) (,5+ k%) (1ec")
2 2, 2 2
_ % 208 ky (e-1) (1 = o/((1+ko ) (1 + k%)
2k 2(1 - ¢") (1 = 0?/0)
' 2
k ds ko (1 = c')
log F(k) = = S s (T =T ,) + log BY + log S
T o TRks HeTe! " 52 (P, P) (o-1)
3 v 2 L2 2 2.
_k &‘ (1,7 ) +1 10g K, (1ec') (1ec/(141,7) (i+ k%)
A 9 §+]ES ] °

21{:12(0 - 1) (k2+ koe)e(lecr’/c)

F(k) =

I z k[ as
kg \/kl ) /1"0') (1-c/(34%o ) e LJ T+ks (Te=Tgv)

X, (s 1k %) v 2(e-1) (1ec?/e)

T K} ds
M the. ﬁ ¢ )(1 ‘/n"ket) e?jo s (fe-%e) . kginkory tko cos ko ¥y

H(ky:

kl (k"& ko) 2{c-1Q -cfe) ‘ k* ¥ kot
toosd ‘
B = 5on AR ke = rp | akFR & (ef. g 1),
iwmeb -L”
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since H(k) is regular at + ik, and F(k) - H(k) is single-valued acrossc the

= O % <1 cut.

. k '
LY byt o TR (-fi(hzllﬂ‘l m) 3 fillegite o

NS dk @ k z(kl -k‘)(l %) F‘(“%‘Yt .m) ZK(,%‘LH..N) -1

-0

D: "n/’:'Ji kot (l‘c‘)(b C! (1*"0\))
where ky (-1 (1 - e/e)

A ’ ® k d& (T —\")
R/, (- k)10 -of) Kk g Mot (Te-T gk
0= =5 23¢9 T (feg k)t ()
1

L]
k d 2 2
log G(k) = = So T:;'s” (Tq = To1) - log (kl - k) + log B,

G{k) =

i 2 62 j(c«l) AR (SRS
k (12 - ¥°) V2(1c?) (2oc'/e)

fl

C
s SBY, ?—ﬁimge 4
1
G(x) bas simple poles at + kl and & branch point et 1. ‘e will therefore be
able to writs g(x) as
B & k.x
g(x) = Ae k}.x + Be 1 -+ J(x)' j(x) = O(BI) 088 X~Pa(

I B
00, = G oy I,
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= 1B - - - o
k]_ '
< .....:{ jo 1 kls (T ==T 0)
A= o ¢ &
éd:_‘“
k., | as
1 omee -
B =+ 27 e
c]_ :
1 2ft s o
k ds ky ‘!‘ sds _Us ,
a_ 1){0 TR (Tc qu} e 7 JO 1ak1dﬂd (Lc ch) _1-'%" o l";k‘zms (-10“ Tci)
e 1
Jf'e‘ .aé:( ~ef(2 s ky>) €-1 ’1!;".!0 ‘ié::?s" (Te= T k sinh kyXy+ K “5“! ’
L klz . ko 2032’} € 4 c'Zu,,l(l kl""
k'a‘? 1 sds .
¢ o e (Yo Tav)
gl{x) = = o o l=k1<8 sinh k; (xex2) + J(x),
1
i1
1 ds
whers Xns = <
O = IR ST
kle sds (ky +k02)(c=1}(0“/(1wk 2)@1)
(Tg =Tg1) = = = lo 1 of. 2.2
T L 1- kla g2 = ° ar) k 3(0/@“:1)2(l<c“) ( 1)
c(1=e/(1ekg?))
= k
x) < [ o e k(g + 300 (2.27)
1o '
i L 1'I i~ xs(Tﬁ‘ Ter) LA L B
Jm= Y j dk ek‘ kla‘kt ¢ T~k ky -hak;
-400
. -Q._g | _dka k¥ rjr TTRS us (Ve- T k.2 (k.2 - k(109 E?F lof :;i‘? -i
= m . kgt eu? (P ke e-1) g * “1’-%:—log A
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2 1
. ekt 00 T e o fo i (e
T T TGN o)k S rog M) &)] »
1
— e
R X ([ e [ T G, D[ e °“”‘(° i 5 xedh
L 2k 2{c-1) (Ko ){( - Glog £1)s (;t_c.)}
. 1
We now have two solutions whose agymptotlo forms are:
1 2 kg 1:1/ (1~c/(1+k ) kl(x-*-xg)
sin ko(x + Xy + - tan ) =
° /L +k2\/ (c“/(lkl)-])
(Ofo 20179 20189 2022)

/(190/(1 + K, )

sinh ky (= + xe)

sin ko(x + x )

¥is introduce the notation,

fgi \!c(l - c/{a +k02))
/5': \ic”(c‘/(l - k12) - 1)

<x><;~9ﬁ:§ <’

1/3

sin ko(x + Xl)

ny (x) &« 4
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/c”(c/(l-:k. )-1)

1
sin k_(x + %y +§:)- tan

(cf, 2,25, 2.26, 2.27)

sinh X (x + %)
ﬁl
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eso::

2 2
ky +
n_(x) is V1. ¥o
@ kl

2.23) . nl(x) is }5- times the "growing solution” next obtained (2.2} to

times the "decaying solution" first obtained (2.1l to

2,27) s Subtracting klnl(x) from klno(x) Fives

k
(o]
+ ¢os k_ (x4x )-s"u?::-:- S—
o J;//ls + k S
1 [
/3" sin ko(x + xl)

= K Ck
= ?‘1 ces ky(x + xl) H;‘J" cosh kl(x + x2)

ng(x)
If we now subtract n; (x) from we get
3

nB(x) = ne‘ii), - nl(x) é»—)% (cos lc'o(x +xy) o 2 - sin k (x +;x1))

\/kle + kde

-1
= ein k 6{ + - ..L_ tan i?_)
ky /B ? N 1 Ko kl

1 =k {x + =)
A

Ve now have two simple pairs of linearly independent solutions, n(x) and

>

n?(x) 3 B, (x) and na(x) o Por any one of these four solutions, hence also
for any other solution made from them as 1linear combinations, the asymptotic

solutions on the two sides and the derlvatives of the asymptotic solutions
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have a constant ratio when evaluated at x = °x1 and x = =x2 for the core

and tamper solutions respectively.

derivative of asymptotic
—kold' core solution (x = -xq)
asymptotle tamper solution {x = °x2) ky derivative of asymptotic
tamper solution (x = -x5)

asymptotic core solution {x = “xl) kP

The points, =X, and =X, 8T© both on the core=slde of the interface, =Xg
being the farther from the interface, This property leads to the following

recipe:

In each medium the asymptotic solution is one of the family of

solutions of the equation: (A + ke) n(x) =04 % = ¢ (k may be either
: tan™ 1k
real or imaginary). Each of the two asymptotic solutions 4o be joined at

an interface is examined at its "fiducial point"”, distant A4x from the intera

face an the side of greater 6.

1
= 1 ds :
axo= L go TS irc = To}

(The Ax for seach solution uses its own k which may be either resl or imaginary,)
The two asymptotic solutions, each at its own fiducial point, have egual
jogerithmic derivatives. The magnitudes of the two solutions, evaluated

at their fiducial polnts, have the same ratio as thelr valuos of the

quantity,

k / ka - © 2 )
;B. \/0(1 - c¢/(1 + k°) \/{-‘-(0/(1 -9 -1 (for K = ik)

—,.

_—
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This recipe paraphrases the conneetion-formulee given above
ldentifying the two asymptotie solutlons on the two-sides ef an interface.
It differs from o simple diffusion theoretie boundary conditiocn connecting
the asymptotic solutions only in so far as

1) &x differs from o (very little, a few hundredths)

K : '
2) Z; differs from a constant {doubles between ¢ = ,7 and 1.7)

This recipe connects only the asymptotic solutions, Detalled

features of the solutions may be gotten from Table I,

APPROVED FOR PUBLI C RELEASE
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Synbole used in Table I,

wl 11/2 ‘
T. = tan . T Q) =10, T, (1) =0
e {tanh"ls - 1/cs:\ e L

In untamped solution

N K, / 2
[s] ”’ ——— T s T2 G = fef{l - C/(jl + k ) C>j{,
o TTREE T ¢ mmhy T fE/leclienn

, _
1 ds k1 v/ 2
Xo ® % Jg mmmeyrm Tg o memmeyt= = =fc(c/(2 ~ ") -1 , ccds
D B A 1 ’

In tamped (two-medium) solutlons tho formulae have been written for the

ease ¢ >1, ¢'L 1. Other cases follow by analybtic extension,

/c(l -o/(1 + kog))

= \/c”(:c'/(l‘ - klz) «:“‘1)

ey
5

Y
i

r = X ds
™ T o T 5B (Tg = Tge)
(x2< x; < 0)
_ 1 S' as .
x2 - _){ I's) di E (TO = ‘Ecq)
1= kl 5

EBach of tho four solutions is presented as an asymptotic solution in sach

medium {sinusoidal or hyperbolic) to which is added a discrepancy term

@(x) for x$0, j(x) for xt.())g This discrepancy term may be of either sign.

&

APPROVED FOR PUBLI C RELEASE




APPROVED FOR PUBLI C RELEASE

- 55 =

{11

th

{

Appendix I

Accuracy of two=boundary approximation.
To estimate the error introduced by neglecting the intersction of

two boundariee we determine the effect of this neglect in the untamped sphere

problem a# a first order perturbation, The fundamsntal eigesnvalue, ¢, of the

equation,

g(x) =c S& dx? n(x?) %b(‘x - x") e nBl=x) = arxtx), (1)

=,

we write as ¢ = co/(l + e) + 0(52)

n
. where a = e Xg{Cy)
kle,) ) o

The integral operator
et c
g dx?® x E(lx - x*{)
A =CO
we denote by AN

Write R = Rix) for x < -8

i
Q

=1 for x> =8

]

L = L(x) o for x > a
=1 forx < a
Equation {i) becomes
(1 + &= ARL) n{x) =0 , valid for =a $x S &
n{x) = ng{x) -+ Iy (=) (11)

n,(x) = ng(x) + nL(x) = sin k x

where nR(x) and nL(x) are the exact one=boundary solutions satlsfying
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il

e s I

(2 mJ\.R)nﬁ = (1 m../\.L)nL = 0

nR(x) =R sin kx + hR(x)

nL(x) = L sin k x + hL(x)

L +¢ =j\RL)nl = (ARL - 1 - 1:7)1:1.0 = {ARL - 1) (nR +n - sin kox) - eng

Since n, must be

n{x), satisfying (1i). Neglecting terms of erder e

= [j\_R = 1 -J\_Rgl - L)]nR —k{AL -1 -ALO - R)] ng
A-1 e AE - 1)] sinkgx - en,

= - A {(1 -Lny, +(1-R)n + (RL - 1) sin kox] - en_

= -\ [(i - L)h, + (1 « R)hy + (R = RL + L = RL +RL = 1)sin k%)
- en

= - A [(1 - L+ (- R)hL] - e, (134)

1 finite, the right side of (iii) must contain no component, -

e we have

S: sma) { Af1 - 1m0 -] s en) =0

L

¢ ga ax 0 %(x) = - gm ax Kln(x) A t(z - L+ (1 - R)hL}
-8 « Q0

v
u§ dx [(1 - L)hR + {1 = R)hLlj\. Rin (x)
[ee]

i

. gm dx [(1 - Ly, + (1 - R)n ] n(x) (iv)

= (X0
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- 57 -

The left term of (iv) is roughly ea. The right term is minus
twice the integral of the discrepancy term, h[-:’ (> 0? starting from a point
distant 2o from its boundary, with n{x) beyond x = a. The character of
a{x) in this region may 'r;e determined by taking c¢' = O in the decaying twoe

medium solution. Its value at the surface is

B _[1-o/(0+ koo)

AT

J2(c - o)v 2

. 2
The right term of (iv) will be approximately (-2) x 1 = o/(1 + ko%) s h{2a)

2

divided by their combined decay-rate, about 3-l, Using these approximations
Por o = 1ol gives

26 , =2 % ¢25 x 4000095
3

€ s asxlo”é

for ¢ = 2,0

1 2 x .58 x ,00117
1°0 . 7; e 9000)_{5

LA N

For a tamped sphere we procced in a similar way!

{1

= + = -+ v 8in kL x +n
n=a, n._l y nL o 1

AR+Q-R %ia} mg =;{1 - AL+Q- L)glﬁ}nL =0

-4

€ -aj\_[RL + (1 - RL} %—L]} n(x) = o

" lonnuih]
)
]

¢ - c' of & ¢ -ct '
-+ - S e ety = vt aeriesa hod a
1 g =N\ p RL+C]}D1 -f\[c RL+0}=1

. (nR + 10y = sin kgx) - £ ng
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{afrro-wn .g] -1} ng + ARG - ue - 9’“&
+{A [t+0a-1n %l]., 1} n, + ALQ - R)(%L ~:1) 1y

c - o' c'
{ -_[\[ RL + E“]} sin k x = en,

il

- (1 - 1) \c ; c') (R sin k,x + hp + gR)

14
- A (2 - R) E;;_i_) (L sin kgx + by + gg)

C = C c! o
i - N .._.....m) RL = gaAJ»in kx = @ R,

i

(1« A) sindgx = 2280 {(1 - Lhg + (1 - R)hL} - en

{

Hence as before:

e~ - ;(1 - %L)J(dx n, (x) A {(1 - Dby + Q- R)hL.\j

Tff'( - E.:.) S: dx n,(x) hg(x)

Estimating this integral in the seme way as before gives

c = 2@0’ e! = 1:0’

-2 ) 05 X .7} x 0003
. x -
.72 . €

Ao = ~ 20015

The chisf factor making these errors smel1 is the rapid decay of h{x). Taking
the untamped-solution walues es tyoical (they will actually be somewhat too
large) it would appear that £ %111 excocd .01 only for cors diameters or

tamper thicknesases considerably less than one mean free path.

411
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e 59 =

*

Comparison with variation theory results gives about 0.3 az the
1imitir.g thickness for 1 per cent accuracy. (cf. Compariscn of wariation

theory and end point resulis for tamped spheres, LA-=205.)
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Appendix II - Solution ¢f the inhomogencous Wiener-Hopf squation.

The Wiener-Hopf technigus was shown by E. Reisener (Journsl of
Hathematics and Phyéics, Volo. XX (19M3), pp 219-22%) to permit extension to
the inhomogeneous probleme We here treat only the one medium problem wi th
the Inhomogeneous term confined to x 2 0. The extension %o the twoemedium
preblem with an uwarestrictsd inhomogensous term is immediately obvious; The
eqguation we wish to solve is:

a0 :
a{x) x‘g dx' n{x') K(x - x') + £ (x) {e)
o 4
where £ (x) is known and vanishes for x £ Oc The Leplace transform of (a),

with the notation used previously is,

6(k) = F() () - D +F (k) = FRPO) +F k),

7 (k) = Sw ax fl(x) R
[+]

(v)

The selution of the corresponding homegeneous equation will be denoted by a
subscript o.

6,09 =F (k) (k)

P(k) = G4(k)/F, (k)
Wo define F(k) such that

P(k) = F (k). F1)
This introduces no singuiarities in F(k) in the right half-plane sinee F (k)

had no roots in the right halfeplens. Then (b) becomes,
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= 6l =

/G (%)

(x) P(k) =F(x) F (k)[\-um/ = F() 8,0 = 6(k) - F (k)

Thus ~F, (k) is the right=enalytic component of F(k) G,(k), which wo may write

a.8

. 1
[E’(k)Go(k) R BTj'_' SL F%TC‘ g. (k') G‘o(liY),

vhers the contour L lies to the left of k and of the singularities of
G,(k} (which are entirely in the right half-plene) and to the right of the

singularities of F(k) (in the left half-plane) .

BEK (0] g = - P (0)

Making use of the fact that '(";"3(“1'5” as woll as G, (k) is amalytic
o

in the left half-plane we can show that (c) is satisfied by

F(k) = = [Fl(k) ET,‘T%?Y]R‘ {d)
sinse
[e,mar00]g = - o000 [0 a:]‘é‘ﬁ‘}n]

_ =1 g dk? G (k")S ak " Fl(kn)
() i KUE Lk - k' G (k)
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§

)

g
. i

N2 1

.1 w PE") |
@u(k) E.(k)}ﬂ = SL" T Ak’ Gy (k) .]: (k'ik + ’1‘:"%‘1??)

(en4)? G, (k") ~ L' R \ETCE
Displacing the contour LV to the left of L" picks up = residue at k* = k",
The remaining k' integral vanishes as it may boe displaced indefinitely to

the left, in which direction the integrand decays as i .. This leaves:
e

- 1 w By (k") 2 "
[:Go(k) .,F;(k)jﬁ W SL" dk | ( @ Go(k )>

G@(k") k’“-k
- [Fl(k)] . F‘l(k)

The particular integrel of (&) has therefore the lLaplace transform

3 = L NIRRT
F(k F, (k) I:Ej@?] %

|
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To this may be added any wultiple of the homoganeous solution, Fo(kﬂ.

To extend this mejhod of solution to the two-medium problem
requires only the replacement of (a) by the corresponding two-medium equation.
This leaves the form of (b) and the rest of the solution unchanged. To treat
an inhomogeneous term e;iséing for both x> 0 and x 0 it suffices to break
up the iﬁhom@genwous term into & right and a left side part and treat each
soparately as above.

A particularly simple special case'of the untamped inhomogenecus

equation is that of the albedo problem -

- QX
f1(x) = e'a a > 0.
Fo (k) = g
1 . E “+ a -
1 : k
L
‘?av
£ 4
(V4
/

Then
[mﬁ(k)”] N 1 S dk" 1
Tolk) |, ST JL kT ok & F &G k)

1 L1 S ak!
T {-aj(k +a) | 2n L' (k' - k) (k' + a)Gy(k")

In the second term the contour L' may be displaced indefinitely to the

Jeft., Jts integrand may be written as
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=6L§, o

Thus the kedependent part of the integral vaenishes. The constent part
represents an admixture of the homogeneous solution to Fy {k)} and therefore

may be disregarded. The general solution is therefore

. Py () '
F(k) = = i'o(k) [&3‘2}7‘] R + A = = Fg(k) (G (ea)j{ik . + A/\ 3
o o]

-

n an albedo problem ¢ will be < i and A should be chosen to meke 1(x)
finite for all x, hence F(k) regular at k = + kl’ despite the pole of P, (k).

Thus

1

A= - Go(”a)(kl + a)

(k - kl) Fo (k)
Pk = T T @6, (o)

The density of emergent neutrone in the albedo problem &s a function of p,

the cosine of the angle of emergence, is

00 -/
o j dxn{x) e

Q
ek (})
B

and is therefore given directly by the solution F(k)o

i

¥{w)

UNCLASSIFIED
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Wt

e T
k ) =65- = -:.‘- L T Tem
ABLE 1 [} ds
TABLE E: 7 . e Tc
C : A
K 0.4 0.6 0.8 1.0 1.2 | 14 1.6 1.8 2.0
o2 | J79L0B | L73643 | 69159 | 65676 | 62911 | .60660 | .58792 | .5721l | .55862
o5 | ~T1IL2 | 66248 [ .62L06 | 59395 | .56988 | 55016 | .53371 | 51975 | 50774
8 | 64816 | 60551 | 57178 | .5L528 | .52379 | 50618 | .L91h2 | L7886 | .Léso) |
;
1.2 | .58303 | 54650 | 51741 { .Loh3o | L7561 | Léoik | .hh712 | 43599 L2tz ¢
1.6 | 53240 | 50039 | L7L7h | .Lsh2é | L3763 | Lez s | L2210 | LLo2os +39338 |
2,0 | 49160 | L6306 | LLho10o | L2168 | L0666 | .39h12 | 38350 | B3TL3T | 36642 |

UNCLASSIFIED
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